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A finite difference analysis of surface acoustic wave propagation and scattering in piezo- 
electric crystals is presented. Numerical solutions of coupled electromechanical equations 
are obtained from an association of a recursive technique with linear iterative methods. 
Finite difference approximations are presented for various surface perturbations, and 
numerical simulations are achieved for some electrical discontinuities on the surface of a 
LiNbOl crystal. 

1. INTRODUCTION 

The propagation of acoustic surface waves on solids is a physical phenomenon 
widely used nowadays in the realization of simple and compact surface acoustic wave 
(SAW) devices [l] which perform various signal processing functions in the mega- 
hertz to gigahertz range of frequencies. Most of these SAW devices are built on 
piezoelectric crystals allowing very simple techniques for the realization of electro- 
mechanical transducers. 

However, while the SAW propagation on piezoelectric crystals is well known for 
the simplest geometries such as the infinite free surface, the infinite metallized surface, 
or the infinite layered media [2], accurate analytical solutions are not available 
when the geometry becomes more complex. This case occurs, for instance, when 
metallic strips are layered on the surface. Every discontinuity between a free surface 
region and a metallized one scatters the acoustic wave. This scattering phenomenon, 
which is undesirable when it distubs the component function, may on the other hand 
be useful in some other devices, such as reflectors, resonators, etc. In any event, 
a better knowledge of scattering phenomena is necessary, both to avoid parasitic 
reflections from transducers and to design optimal geometries of reflectors. 
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The problem of SAW propagation and scattering is governed by partial differential 
equations with boundary conditions; thus finite difference techniques are particularly 
suited to finding solutions of such a problem. These techniques have been successfully 
used by several authors [3-l 11, who have determined the surface wave scattering from 
various geometrical obstacles but only on isotropic solids. 

In this paper, we propose a finite difference analysis of surface wave propagation 
and scattering on high coupling piezoelectric substrates. This method is more com- 
plete than the earlier ones, because it takes into account anisotropy, piezoelectricity, 
and electrical boundary conditions. In order to solve the coupled equations in piezo- 
electric materials, the association of two different techniques using finite difference 
approximations is required: 

(a) The initial value problem for the mechanical displacements [12, 131 is 
solved by recursive techniques. 

(b) At every step of the recursive process, Dirichlet’s problem of the electrical 
potential is solved by linear iterative techniques [13, 141. 

This method has been used for the study of electrical discontinuities, i.e., the effect 
of short-circuiting some regions of the crystal surface and results concerning both 
surface wave behavior and electrical behavior have been determined. Some of these 
results have been presented already [15-l 71. 

2. STATEMENT OF THE PROBLEM 

Figure 1 shows a longitudinal section of a part of a SAW device. The surface wave, 
which propagates along the direction x1 , meets finite width metallic layers S, , S, ,.... 
These metallic layers are assumed to be massless and perfectly conducting. 

c-“-K-+ 
mcldent 
S.A.W. piezoelectric 

crystal 

x3 

FIG. 1. Longitudinal section of a part of an SAW device. The incident surface wave, propagating 
in the direction x1 , meets metallic layers S, ~ S, , S, . 

This approximation is valid when thin layers of a light metal are layered on the 
surface of a high coupling piezoelectric crystal: When the layer thickness is small 
enough with regard to surface wave wavelength, the mechanical effects (mass loading) 
may be neglected with regard to short-circuit effects [18, 191 (for example, A/electrodes 
on LiNbO, , and frequencies up to about 100 MHz). 

The electromechanical system is governed by the following partial differential 
equations [2, 20, 211. 



FINITE DIFFEREtX!E: ANALYSIS OF SAW SCATTERING 155 

(a) In the piezoelectric crystal. 

-Equation of motion (hyperbolic) 

a2uj _ a2ul, a2v 
p at2 - - %kt ax,ax, - ekij ___ , 

axk a& 
i, j, k, 1 = 1,2, 3. 

-Equation of piezoelectric coupling (elliptic) 

a2uk 

eikl axi ax, 
a2v o 

- - Eik - = 
ax, axi 

, i, k, 1 = 1,2, 3, (2) 

where the ui are the mechanical displacement components, measured along the 
Cartesian axes to which the stiffness tensor cij,+l , the piezoelectric tensor ekif , and 
the dielectric tensor Eik are referred, V is the electrical potential, and p is the density 
of the crystal. 

(b) In the vacuum. Laplace’s equation (elliptic) 

vv = 0. (3) 

(c) Boundary conditions. The boundary conditions take into account the 
local conditions on the surface (i.e., free surface or short circuited surface). One 
can consider two kinds of conditions: 

-Mechanical boundary conditions: The surface must be traction-free e.c. 

auk 
av 0 T3.i = %.ikZ ax, + ek35 ax, = for x3 = 0, 

where Tti are elements of the stress tensor. Since the metal strips have been assumed 
massless (very thin plating), this condition must be imposed even for a metalized 
surface. 

-Electrical boundary conditions: For a free surface, the electrical potential V 
and the normal component D3 of electrical displacement must be continuous across 
the charge-free interface. Furthermore, the potential must vanish when x, -+ - co 

V(x, = o+) = V(x, = o-), (5) 

DD,(x, = o+) = Dj(Xg = o-), (6) 

with 

D, = -~,,g 
3 

for xs < 0, 
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For a short-circuited surface, the electrical boundary condition must be 

av 0 -= 
ax, 9 for xS = 0. 

Finite difference techniques are particularly suited to solving such problems, but they 
require important computing resources. In this first step, we have achieved a finite 
difference analysis of the behavior of an incident straight-crested Rayleigh wave in 
the particular case of Z propagation on Y-cut LiNbO, crystal. 

This particular cut on LiNbO, has been chosen both for its high piezoelectric 
coupling constant [22-241 and for the characteristics of the Z-propagating Rayleigh 
wave, which has only two displacement components. Nevertheless, this analysis is 
suitable for other Y-cut Z-propagating crystals of class 3m, like LiTaO, , for example. 

3. FINITE DIFFERENCE ANALYSIS 

The invariance of solutions along X, for &tight-crested waves allows us to consider 
only two spatial variables, X, and x3 . Z-propagating Rayleigh waves on a Y-cut 
LiNbOa crystal have no transverse displacement component u2. Furthermore, some 
elements of the stiffness, piezoelectric, and dielectric tensors are null [25, 261. Thus, 
the problem is reduced to three variables (x1, x, , and time) and solutions will be 
searched only for the displacements a1 and ug and for the potential V. 

3.1. Discretization 

A closed study domain ABCD is chosen (Fig. 2) into which both time and space 
variables are discretized by superimposing a square grid on the domain ABCD, 
with a mesh spacing h. Each node located at x1 = ih and x, = jh is characterized 
by the set of integer indices (i,j) where i and j are increasing, respectively, along x1 
and x, . The domain has A4 nodes along x1 and N nodes along xg [AB = (M - 1) h 
and AD = (N - 1) h]. The time increment is denoted by I, and the time 7 = tl 
is characterized by the integer index t. 

A a 

--_ .-_. 

h 
w 

th 

FIG. 2. The space is discretized into the study domain ABCD. (The mesh spacing Ax, = Ax, = h.) 
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3.2. Determination of Mechanical Displacements 

(a) The centered finite difference approximation of the equation of motion (1) 
can be written 

P(i,j, t + 1) = 2P(i,j, t) - u’(i,j, t - 1) 
+ [A][V(i + l,j, t) - 2v(i,j, t) + O(i - l,j, t)] 
+ [B][U(i,j + 1, t) - 2U(i,j, t) + O(i,j - 1, t)] 
+ [C][U(i + 1,j + 1, t) + O(i - 1,j - 1, t) 
- O(i + 1,j - 1, t) - O(i - 1,j + 1, t)], (10) 

where M,j, t) Qi, j, t) = [ 1 u3(i, j, t) and 
V&i, t) 

Ul(i,j, t> = [z::? ii], (11, 12) 

Ml = $[F cy, 21, (13) 

PI = $ [Z;; ;i: y], (14) 

[C] = Z[ O 
+h2 (~13 + ~35) (c132z c35) 35 (e13 P es3 1 ’ 

(15) 

where cz5 and ei5 are components of the matrix form of the stiffness and piezoelectric 
tensors (obtained by the Voigt notation) [26]. 

The two explicit difference equations obtained from (10) allow the determination 
of the displacement of the node (i, j) at time (t + 1) as a linear combination of dis- 
placements and potentials of node (i, j) and its eight neighbors at the two previous 
time levels (t) and (t - 1) (Fig. 3). However, these equations cannot be used to deter- 
mine the displacements of nodes lying either on the artitkial boundaries ABCD 
or on the free surface Ss’, because these nodes do not have eight neighbors. The diffi- 
culty is eliminated on the artificial boundaries ABCD by imposing suitable values to 
corresponding nodes, but the physical boundary Ss’ requires a particular treatment. 

(i-l) (i) (i+l) 

(i -1) 

(i) 
(isi&) 

(i.i,t+l) 

ik!3- 

(i.i.t-1) 

,- 

tir6 (i+l) 

axe 

FIG. 3. Displacements of node (i,j) at time t + 1 is a linear combination of displacements and 
potentials of node (i,j) and its eight neighbors at the two preceding times t and t - 1. 
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(b) Boundary conditions. The nodes lying along the crystal surface SS’ must 
satisfy the boundary conditions (4) and (5)-(g). In order to compute the mechanical 
displacements of surface nodes with the explicit finite difference equation (IO), 
fictitious values of displacements and potentials are determined on the line located 
just above the surface (Fig. 4, line j-l). These fictitious values of potentials and 
displacements are such that the boundary conditions are satisfied on the surface line (j) 
[3-l 11. (It should be noted that two values of potentials are avilable for nodes of line 
j - 1: The actual value of potential in the vacuum and the fictitious one required by 
the boundary-condition expressions.) 

--P----9-- 
e-y--y __._ g.---.o----~o.. I-1 

I I 

I I I I I I 
I 1 I I I 

/j/-f// 
’ 1 , 

//7/i/ 
7 I ’ 

177%7+7 i 

I I / I I 

-r--~--c--C--j--i--j--;+, 

FIG. 4. On the nodes o of line 0’ - 1) above the surface, fictitious values of displacements and 
potentials are determined according to the boundary conditions. 

From finite difference approximations of the boundary conditions, the fictitious 
electromechanical vector U,(i, j - 1, t) for the node located at (i, j - 1) is determined. 

U,(i, j - 1, t) = [Ml-l ; , 
0 

(16) 
Y 

with 

U,(i,j - 1, t) = [$j: ii ii] (fictitious values), (17) 

Ly = C&l(i, j + 1, t) + us(i + l,j, t> - %(i - Lj, 01 
+ cs,~,(~,j + 1, t> + es5W,j + LO, (18) 

p = c1&1(~ + l,j, t> - Ul(i - l,i t)l 
+ c&&,j + 1, t> + us(i + Lj, t) - us(i - l,j, t)l 
+ cs3us(i,j + 1, t) + e,,[V(i + Lj, t) - V(i - l,j, t>l + %W,j + 1, t>. (19) 

Matrix [A41 and y depend on electrical boundary conditions; for a free surface, 
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y = eJj&,j + 1, t) + u& + l,j, t) - u,(i - l,j, Ql + w.4W + LO 
- E&i,j + 1, t) - EJV(i + l,j, t) + V(i - l,j, t) + 2V(/(i,j - 1, t) 

- 4WL 01, (21) 

and for a metallized surface, 

Pfl = [zg ;I Z;:], (22) 

y = 2V(i,j, t) - V&j + 1, t). (23) 

(c) Stability conditions. By the application of a standard von Neumann 
analysis analogous to the one presented by Alterman and Loewenthal [4] we get the 
necessary stability condition 

h 2 ( ) r 
, a + c + [(c + bj2 + 4dP2 

2P 
, (24) 

with 

a = cl1 + cs3 + 2~~ ; b = cs3 - cl1 ; 

d = & + tell + e35)[2ed35 + tcll - c33kl f e3dl 

El1 + -533 
, 

which yields to 

(h/l) > 8546 m/set for YZ LiNnO, , 

(h/l) > 7332 m/set for YZ LiTaO, . 
(25) 

Usually, we have chosen h/l about 20 % higher than the minimal value of (25). How- 
ever, this von Neumann condition applies only for nodes which are not in the vicinity 
of the surface and Ilan and Loewenthal [27] have shown that the introduction of 
surface boundary conditions may give rise to instabilities for some range of elastic 
parameters, even when the previous condition is fulfilled. 

Nevertheless, the recursive process, which has been checked together with the 
method accuracy, is stable for YZ LiNbO, and for YZ LiTaO, . 

3.3. Determination of Electrical Potentials 

The recursive determination of mechanical displacements requires the knowledge 
of the electrical potentials at every discrete time. Then, before every incrementation 
of time, it is necessary to compute these potentials at every node of the study domain. 
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The potential is governed by an elliptical differential equation, and the finite 
difference approximation to this piezoelectric coupling equation may be written: 

1 
WA t> = qEll + E33) {qJV(i + 1, j, t) + v(i - l,j, t)l 

+ E33P(i,j + 1, t> + v,j - 1, 01 
- [D][U’(i + l,j, t) - 2U’(i,j, t) + U’(i - I,j, t)] 
- [E][B’(i,j + 1, t) - 2D’(i,j, t) + V(i, j - 1, t)] 
- [lq[O’(i + 1,j + 1, t) + U’(i - I,j - 1, t) 
- V(i + I,j - 1, t) - V(i - 1,j + 1, t)]}, (26) 

PI = (en 3 0); WI = (e35 3 d; [F] = [o, e13 ; e35 1, (27) 

Here, the mechanical displacements, already determined at time t, are considered 
as data, and with respect to potential, this approximation is a “four nodes” type of 
approximation. 

(a) Dirichlet’s problem. In order to determine the electrical potentials, the 
problem is modified into a Dirichlet problem by assuming that a zero equipotential 
is located at a distance d above the surface (Fig. 2). An analytical computation 
analogous to the one used by Campbell and Jones [2] shows that the change in SAW 
propagation characteristics is very small when d > 0.0 (where X is the wavelength 
of surface wave), and the initial hypothesis of totally free surface is not altered by the 
presence of the equipotential. In practice, we have chosen d = h/2. Suitable values 
of potentials are imposed on nodes lying on the artificial boundaries ABCD of the 
study domain. 

In the vacuum above the crystal, the finite difference approximation of Laplace’s 
equation leads to the classical “four nodes” formula. 

V(i,j, t) = $[V(i + l,j, t) + V(i - l,j, t) + V(i,j + 1, t) + V(i,j - 1, t)]. (28) 

(b) Interface conditions. Because the derivatives of potential are not continuous 
across the interface, the centered finite difference approximation (26) and (28) cannot 
be used for surface nodes. A particular approximation is necessary. This approxi- 
mation takes into account the piezoelectric coupling equation, Laplace’s equation, 
and mechanical and electrical boundary conditions, and it uses noncentered approxi- 
mations. For a free surface, it may be written: 

1 
vo = 2(E33 + Cl1 + 2EO) I 2h3V2) + %U4)1 + (El1 + %Ml) + V(3)l 

- ellbl(l> + us(l) - 2f41(W - 2e35h(2) - do)1 

- 2e33[u3C4 - u3(0)1 + e13 ; e35 b,(l) + u,(6) - u,(3) - u,(S)] 

+ -$ b,(l) - ~3(3)$ (29) 
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with 

rl = e&w5 - ch5) + ea3(e35c35 - c55e331y 

d = Cd55 - c,“, , 
(30) 

and where the position of a node is characterized by a number, according to the 
diagram of Fig. 5. 

j-1 s7 * 
'4 '8 

1 
i 77&,,,&,,,977 

j+l I6 12 15 
w 

FIG. 5. Characterization of nodes for Eq. (29). 

(c) Linear iterative techniques [13, 141. By writing the appropriate finite 
difference approximation (26) or (28) or (30) at every node (i,j) of the study domain, 
a linear system is obtained: 

where the searched potentials at time t, are the elements of column matrix [V] 

VK = V(i, j, t) with i = 2, (N - l), j = 2, (M - l), k = 1, (M - 2) x (N - 2). 
(32) 

This system is similar to the ones encountered in the finite difference analysis of electro- 
static and electromagnetic [28-301 phenomena, though it is more complicated because 
of coupling between mechanical displacements and potentials. The potentials are then 

[V] = [A]-l[B]. (33) 

The matrix A can be inverted by linear iterative techniques. Exact values of potentials 
are imposed on the boundaries ABCD of the study domain, whereas arbitrary ones 
V” are alloted inside the domain. The appropriate finite difference approximation 
is applied successively at every node of the study domain, and a new column matrix 
V(l) is obtained. A new iteration is carried out again and yields P). The process 
converges if P) -+ V+l) as n -+ co. 

We have used such techniques in order to determine the potentials at every step 
of the recursive process, although in order to reduce the number of iterations an over- 
relaxation method has been chosen [13, 14, 30-321. With the overrelaxation method, 
the finite difference approximations (26), (28), and (30) are modified by introducing 
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a relaxation factor w. An example of such a modified approximation is given for the 
Laplace equation: 

V(i,j, t) = T [V(i+ l,j, t) + V(i- l,j, t) + V&j + 1, r) + %j - l,Ol 

- (w - 1) V(i, j, t). 

For a study domain of size M = 240 and N = 80, the optimal value of w is about 
1.77 and the potentials are determined with a precision of about 1 % after 18 to 20 
iterations. The knowledge of the electrical potentials then allows the incrementation 
of time and a further computation of mechanical displacements. The linear iterative 
techniques are used to determine the potentials at every discrete time f. 

4. APPLICATION OF THE NUMERICAL METHOD 

4.1. Initialization 
. 

The numerical simulation of SAW propagation and scattering is initialized 
by assuming that a pure Rayleigh wave propagates along an unperturbed surface 
(Fig. 6). At time levels t = 0 and t = 1, analytically computed values of potentials 
and displacements due to the pure Rayleigh wave are alloted to nodes of the study 
domain. At time level t = 3, the recursive process is started. Mechanical displace- 
ments are computed from the numerical values of potentials and displacements 
at the two previous times and then the potentials are determined. 

R+q==f-- 
D C 

bl ‘c D 

FIG. 6. (a) Initialization: At times f = 0 and t = 1, it is assumed that a pqre Rayleigh wave 
propagates along an unperturbed surface. (b) After the simulation piocess has been started, the 
conditions of the surface perturbation are imposed. 



FINITE DIFFERENCE ANALYSIS OF SAW SCATTERING 163 

In order to maintain the Rayleigh wave propagation, analytical values in agree- 
ment with the initial wave are imposed at every discrete time to nodes lying on the 
boundaries ABCD of the domain. Thus, the column AD acts as a source, whereas 
the column BC acts as an “adapted load.” When the lower line DC is far enough 
from the surface, its displacements and potentials can be set to zero. 

Boundary conditions corresponding to surface perturbations (metallic strips) 
are imposed on the surface after the simulation process has been started. Surface 
wave scattering from discontinuities is numerically simulated, but the recursive 
process must be stopped just before the scattered waves reach the limits of the domain 
and consequently the study domain must be chosen long enough. 

4.2. Metallic Strips on Surface 

When metallic strips are layered on the surface, initial solutions are not known 
and thus the recursive process above is initialized by assuming the surface to be unper- 
turbed at times t = 0 and t = 1. When the numerical simulations have been started, 
local appropriate boundary conditions are imposed to surface nodes, i.e., (16), 
(20) and (21) for a free surface, and (16), (22) and (23) for a metallized surface. 
However, when the surface is partly metallized, it is necessary to take into account 
the two electrical conditions which may be imposed onto the strip in order to compute 
electrical potentials. 

(a) The strippotential is imposed. If the strip potential denoted by V, is imposed 
(generally V, = 0), the value V, is alloted to surface nodes located at the strip position 
and this value is maintained unchanged during each linear iterative process. 

(b) The strip potential is notfixed. This case occurs when the strip is not con- 
nected externally (Fig. 7a), or when it is connected to an external electrical circuit, 
for instance, a resistor between the strip and ground (Fig. 7b). (When R = 0, it 
becomes case (a).) The potential attained by the strip is then a “floating” potential 
due to the effects of both the surface wave propagation and the electrical circuit 
(i.e., in the example of Fig. 7b, the latter is given by Ohm’s law across the resistor). 

Because the piezoelectric crystal is also a dielectric [33], the total electrical charge 
per unit length of strip must remain unchanged in the case of Fig. 7a, whereas the 
electrical charge variations are governed by Ohm’s law in the case of Fig. 7b. Then, 

bl ---A--- 

FIG. 7. (a) Unconnected strip. (b) Strip connected to an external electrical circuit. (Here, a 
resistor between strip and ground.) 
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at every discrete time, the strip potential V, is a solution of both the Dirichlet problem 
and Ohm’s law 

where dQ/& denotes the increase of electrical charge Q per unit length of strip during 
the time increment dT. 

The finite difference approximation of Ohm’s law may be written as 

(36) 

where the electrical charge Q(t + 1) at time t + 1 is expressed in terms of the strip 
potential and charge at the two preceding times. (When the strip is insulated, this 
condition becomes simpler, Q(t) = 0, Vt.) 

A particular finite difference approximation is used in order to determine the elec- 
trical potential V, of such strips, i.e., an approximation based upon an application 
of Gauss’ theorem around the strip. Figure 8 shows the grid near a strip. During the 

FIG. 8. The grid near a strip. Gauss’ theorem across PQRS leads to a particular finite difference 
approximation. 

recursive process, the electrical charge per unit length of strip is determined and this 
charge then acts as input data during the linear iterative resolution of the potentials. 
Gauss’ theorem is applied to the boundary PQRS around the strip. Because of the 
invariance of the solutions along the direction x2 , Gauss’ theorem may be written 

s D.dl = Q(t), (37) 
PQRS 

where D is the electrical displacement, and dl a unit length vector normal to the line 
PQRS. 

The writing of a finite difference approximation to D at every node belonging to 
the boundary PQRS yields a difference approximation of V, , 

v, = Q(t) - q 
(%I + d Ns + (%I + 4 ' (38) 
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where N, is the number of nodes of the strip and q is a linear combination of potentials 
and displacements of the nodes surrounding the strip (located on lines PQRs and 
P’Q’R’S’). Thus, with the overrelaxation method, the potentials are determined 
taking into account the electrical conditions. 

4.3. Simulation of SA W Propogation and Scattering 

As a first step, the whole numerical method has been tested for the simplest cases 
such as the entirely free or the metallized surface. The comparison of numerical 
results with analytical solutions, well known in these simple cases, has allowed us 
to determined the precision of the method and, furthermore, to determine the optimal 
values of the relaxation factor w. 

Most of the numerical calculation has been carried out in a standard study domain 
in which distances have been normalized with respect to the surface wavelength h. 
The size of this standard domain is M = 240 and N = 80, with a space increment 
A/20 and a time increment l/601;, where F is the surface wave frequency. The domain 
size is thus 12h long and 4h deep. The zero equipotential is located at h/2 above the 
surface and the first obstacle is located at 5X from the line source. The simulation 
process is stopped after 200 to 260 increments of time, i.e., 3.3 to 4.3 periods. The 
overrelaxation method requires about 18 iterations when w = 1.77. The comparison 
of numerically computed values of u1 , us , and V with analytical solutions in the 
particular case of a free surface leads to an evaluation of the method accuracy. The 
relative errors on U, (Rayleigh wave velocity) and on amplitude of vibrations ur, 
u3 , and V, after a 3.2 period simulation, are 

Au 
2 = -8 x 10-3, - 4 = -9.5 x 10-3, 

VT Ul 

Au3 Av - = 2.8 x 1O-2, - = 1.1 x 10-Z. 
u3 V 

It is seen that the numerical method presented here provides a simulation of SAW 
propagation in YZ LiNbOs with good accuracy. It has been used in order to determine 
SAW behavior near various geometries of electrical discontinuities, each geometry 
requiring a particular computer run. With the standard study domain size, each 
computer run is achieved after 180 min CPU time with 600K memory size on an 
IBM 360/65 computer. 

Scattering properties of surface acoustic waves are deduced from amplitude 
curves like the ones presented Figs. 9 and 10. The analysis of such curves leads to 
reflection and transmission coefficients, whereas the evolution of electrical potentials 
leads to the characterization of acoustoelectric conversion. Some results thus obtained 
have been presented already, for example, SAW behavior on a free-metallized inter- 
face [15, 161 and on one or two metallic strips [17, 341. Complete results, concerning 
both SAW scattering and acoustoelectric conversion, will be pubilshed elswhere and 
compared to experiments. 
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0 I > 

-3 
-2 -1 0 I 1 2 xvi 

FIG. 9. Example of displacement amplitude curves into the study domain: Amplitude of u1 
in terms of normalized position x1/A, x.&L (VI, denotes the amplitude of the component u1 of the 
incident wave, for x8 = 0.) 

A 

1.6. 

1.3. 

1 - 

FIG. 10. Example of amplitude curves: Amplitude of u3 in terms of normalized position x,/h, 
%I~. 

5. CONCLUSION 

A finite difference analysis of SAW propagation and scattering on a highly piezo- 
electric YZ LiNbOs crystal has been presented. This analysis, which uses two different 
techniques in order to solve the coupled electromechanical equation in piezoelectric 
materials, is well suited to the simulation of the SAW behavior near surface pertur- 
bations, and it may be considered as a useful analytic tool. It should be improved 
further in order to be available for any crystal cut and any direction of propagation. 
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